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We investigate the generic dielectric properties of solids in the split-charge equilibration �SQE� formalism,
which contains the regular charge equilibration �QE� method as a limiting case, but augments it with a bond
hardness term. It is shown that QE always mimics ideal conductors, while any positive bond hardness used in
SQE turns the solid into a dielectric. Crystals with simple cubic and rocksalt structure are considered explicitly.
For these symmetries, we solve the continuum limit of the SQE formalism analytically. As a result, we provide
simple analytical expressions for how dielectric constant and penetration depth of the electrostatic field depend
on atomic hardness, bond hardness, and lattice constant. This mapping may prove useful not only for force
field parametrization but also for solving dielectric responses on coarse-grained scales. Successful comparison
of numerical data to analytical solutions is made, including those containing discretization corrections.
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I. INTRODUCTION

Assigning meaningful atomic charges to atoms is an im-
portant aspect of force field development as long-range in-
teractions crucially depend on the charge of an atom.1–3 This
task is difficult when dealing with heterogeneous media,
such as interfaces between silicon and silica, as one cannot
know what effective charge to give to atoms near the inter-
face prior to a simulation. Similar comments apply to many
other chemically heterogeneous systems, which is why there
is a broad interest in assigning atomic charges that reason-
ably reproduce the electric fields generated by the systems of
interest.

The schemes of assigning atomic charges can be roughly
divided into two categories: atom-based and bond-based ap-
proaches. In the atom-based methods,4,5 which are also
known as charge equilibration �QE� methods, partial charges
are chosen such that they minimize the potential energy
function Vpot,

Vpot = �
i
��i

2
Qi

2 + �iQi� + VC, �1�

typically under the constraint that the net charge is neutral.
Here, Qi is the charge of atom i, �i and �i are its hardness
and electronegativity, respectively, and VC is the �potentially
screened� Coulomb interaction between the charges plus
their coupling to electrostatic potentials originating from ad-
ditional sources. An attractive aspect of QE methods is that
their functional form can be motivated from density-
functional theory �DFT� arguments.4,6,7 Moreover, the values
for � and � can be determined from measurable atomic pa-
rameters, i.e., electronegativity and ionization potential. Thus
these parameters should be transferable in principle.

One disadvantage of the QE method is that noninteger
charges can be transferred between two atoms across large
distances; e.g., hydrogen and fluorine would be assigned par-
tial charges even if the chemical bond of the HF molecule
was broken. This charge transfer is in contrast to the obser-
vation that both atoms become neutral at large separation as
the ionization potential of hydrogen exceeds the electronega-
tivity of fluorine. The ability of atom-based QE methods to

invoke such nonlocal charge transfer is responsible for the
improper scaling of the polarizability of simple alkane chains
with the degree of polymerization;8,9 i.e., the dielectric re-
sponse is automatically that of a conducting polymer. This
result implies that condensed phases of QE systems are also
conducting and that the electrostatic fields near the surfaces
are parallel to the surface normal. Hence, QE methods will
generally not give accurate approximations of electrostatic
fields near dielectric clusters and solids because it ignores the
two transverse components that tend to be present in the
electrostatic fields produced by real dielectrics.

In newer atomic charge-transfer approaches, some but not
all of the discussed problems have been cured. For example,
in the quadratic valence-bond model �VBM� �Ref. 10� the
electronegativity difference between two atoms is made dis-
tance dependent, thereby producing the correct dissociation
limit of diatomic molecules.11 However, a small externally
imposed difference in the electrostatic potential, which could
be due to a third particle, would still induce nonlocal charge
transfer.12 In the fluctuating charge model and generaliza-
tions thereof,13,14 nonlocal charge transfer is suppressed by
constraining the charge in individual molecules, which re-
quires ad hoc assumptions on the bonding situation and
makes it conceptually difficult to include bond breaking into
the approach.

In order to remedy the nonlocal charge-transfer problem,
bond-based descriptions were developed in which charge can
only be transferred between two bonded atoms.8,14 If the
charge transferred from atom j and atom i is denoted by qij,
then the net charge of atom i is

Qi = �
j

qij , �2�

where qij =−qji. In bond-based approaches, the hardness is
associated with the charges, qij transferred across a bond,
rather than with the atoms. Thus, the term �i�iQi

2 /2 in Eq.
�1� is replaced with �ij�s,ijqij

2 , where the sum runs over all
bonds involving atoms i and j, and �s denotes the bond hard-
ness. An advantage of pure bond-based descriptions is that �s
can be made as distance dependent, whereby charge transfer
across large distances can be suppressed. However, a pure
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bond description loses the attractive feature of QE ap-
proaches that the parameters � and � are motivated from
DFT. Moreover, the polarizability of alkane chains with the
degree of polymerization exhibits the wrong scaling in the
limit of small chains.9

Recently, the split-charge equilibration �SQE� approach
was proposed, which combines the ideas of atom-based and
bond-based approaches in one model. In its simplest or de-
fault variant, Vpot can be expressed as

Vpot = �
i,j�i

�s,ij

2
qij

2 + �
i
��

2
Qi

2 + �iQi� + VC. �3�

In this variant SQE retains the parameters � and � that are
motivated from DFT but also includes the phenomenologi-
cally added bond hardness term, �s, which penalizes charge
flow between two atoms. The SQE model can be param-
etrized to produce the correct dissociation limits of mol-
ecules by turning the bond hardness into a distance-
dependent term,12,15 and it shows more accurate scaling with
the degree of polymerization than other charge equilibration
schemes,9 thereby remedying the problems associated with
charge-transfer potentials mentioned so far. Lastly, the SQE
approach contains the pure bond- and pure atom-type ap-
proaches as limiting cases by setting either the atomic or the
bond hardnesses to zero, respectively. For these reasons, the
SQE formalism is a promising avenue to accurately describe
atomic charge transfer in classical force fields.

In this work, we wish to elucidate another advantage of
the SQE method, namely, the ability to tune the dielectric
response of a solid by turning on the pure bond hardness
term in the formalism, without having to resort to reverse
mapping schemes beforehand, such as reverse Monte
Carlo.16 Charge equilibration methods are usually param-
etrized for molecules in the gas phase. While the methodol-
ogy has been applied to the condensed phases, in particular
in molecular-dynamics simulations, we are not aware of an
attempt to determine the two most important phenomeno-
logical dielectric materials constants, namely, the dielectric
constant and the penetration depth, from the QE or SQE
model parameters. It is the intention of this work to fill this
gap. We will do this by a combination of analytical and nu-
merical works; in particular, we investigate the dielectric re-
sponse of a simple cubic and rocksalt lattice to an external
field. This will be done by investigating the continuum limit
of the SQE model, which can be solved analytically.

II. THEORY

In this section, we discuss the generic dielectric properties
of our ordered one-component �simple cubic� and two-
component �rocksalt� systems. To do this, we first calculate
the expected charges for the sublattices of the rocksalt struc-
ture and discuss the stability of the solution as a function of
the model parameters, which are the lattice constant, a, the
Madelung constant, �M, and the split-charge parameters.
Next, we introduce notation required for the later analytical
sections in which we derive the continuum limit of the SQE
approach and its solution. Special attention is paid to the

response of a dielectric solid in a capacitor geometry from
which one can derive simple analytical expressions for the
dielectric constant and the penetration depth. Our treatment
will also include discretization corrections that move our
treatment beyond the continuum limit.

Generalization to more complicated compositions and ge-
ometries can be made in a straightforward fashion, and there-
fore conclusions we draw on our very simple model systems
should remain valid for other two-component structures. The
main differences between simple and complex geometries
would be that dimensionless factors in the equations would
turn out differently for other crystal geometries and that cou-
pling between next-nearest neighbors would lead to similar
changes in wavelength-dependent properties as they do in
problems related to lattice dynamics.

A. Atomic charges for the rocksalt structure

For a strictly period rocksalt crystal it is a straightforward
procedure to calculate the atomic charges because each split
charge is identical, except for a sign, i.e., qij = �qs, where we
chose qs to be positive. In the rocksalt structure, where each
atom has six neighbors of opposite charge, the atomic
charges are Qi= �6qs, depending on the ion type. If �M
denotes the Madelung constant and Nn=6 is the number of
nearest atoms, then the energy per atoms v is given by

v =
Nn

4
�sqs

2 +
1

2
��Nnqs�2 −

�M

4�	0

�Nnqs�2

a
�


�

2
Nnqs, �4�

where 
� is the electronegativity difference of the two spe-
cies occupying the two sublattices and � is the average value
of �Cl and �Na, where we have indexed � with the symbols
Na and Cl to distinguish the two different species on the
sublattice.

The system is positive definite and hence stable if the
prefactor to the term quadratic in qs is positive, i.e., when

Nn�s + 2�Nn
2 −

�M

�	0

Nn
2

a
� 0 �5�

in which case v can be minimized by requiring that �v /�qs
vanishes and thus

Q = �
Nn

2
�

Nn�s + 2�Nn
2 −

�M

�	0

Nn
2

a

. �6�

Generalization to other two-atomic crystals remains rela-
tively simple as long as each atom has a well-defined posi-
tion in the unit cell so that Madelung constants can be de-
fined.

B. Notation and convention

In this section, we will define some of the notations and
conventions used throughout the remainder of the paper. Lat-
tice points will be indexed with three indices �l ,m ,n� such
that
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1

a
Rlmn = lex + mey + nez �7�

when they are explicitly indexed. Unless mentioned other-
wise, indices l, m, and n will run from one to Nx, Ny, and Nz,
respectively, which will be taken to be infinity in the analyti-
cal calculations.

The split charge flown from atom �l+1�mn to atom lmn
will be denoted as qlmn

�1� , and likewise the split charge flown
from atom l�m+1�n to lmn will be denoted as qlmn

�2� , etc. With
this notation the charge on atom lmn can be written as

Qlmn = qlmn
�1� − q�l−1�mn

�1� + qlmn
�2� − ql�m−1�n

�2� + qlmn
�3� − qlm�n−1�

�3� .

�8�

This notation will allow us to map the diagonalization pro-
cedure of the split-charge formalism onto an eigenmode
problem of lattice vibrations in the simple cubic �or rocksalt�
crystals. Please note that this mapping is not critical to the
results but a matter of rather large convenience.

The assumption of the continuum limit in the SQE model
is that the qlmn are smooth functions of their indices so that it
is meaningful to define continuous functions q�R� reflecting
the split charges at the lattice sites. Interpreting Eq. �8� as a
finite difference version of a gradient, one can also describe
charges as smooth functions of R via

Q�R� = a��q��R� . �9�

Note that Q�R� /a3 corresponds to the charge density, ��R�;
i.e., Q�R� is the charge contained in an appropriately chosen
elementary cell around a given lattice point.

In reciprocal space, Eq. �9� reads as

Q̃�k� = iak�q̃��k� �10�

in the continuum limit, where we have assumed the summa-
tion convention over identical Greek indices. For lattices
other than simple orthorhombic lattices, explicit summation
would be required because the orientation of the split charges
would not align any longer with the Cartesian coordinate
axis and the continuum limit calculations would be more
cumbersome to be carried out.

In analogy to lattice problems, one could associate the
q��R� as vibrations in the � direction. The �s would then
correspond to on-site springs, while the � would reflect
springs between two nearest-neighbor particles. These
springs would not only have a longitudinal component but
also transverse �i.e., bending� components of identical mag-
nitude.

If one wants to take into account the discreteness of the
lattice and its periodicity when relating the split-charge field
and the charge density, then the term k� in Eq. �10� should be
replaced with the following expression:

k� →
2

a
sin� k�a

2
� . �11�

While the lattice constant a was used to define the unit of
length, we will formally write the number density of atoms,
n, as n=1 /a3. In the bulk, there are three split charges per
atom on average so that one can define the split-charge den-

sity as ns=3n. The number density of the split charge with a
given index is the same as the atomic density.

Lastly, we would like to define the prefactors for the Fou-
rier series coefficients;

q��R� = �
k

q̃��k�eik�R�, �12a�

q̃��k� =
1

N
�
R

q��R�e−ik�R�. �12b�

The same convention for Fourier transformation will be used

for the charges Q�R� and their Fourier transform Q̃�k�. This

way Q̃�0� corresponds to the average charge.

C. Diagonalization of the split-charge energy

In this section, we will express the energy of the split-
charge model in reciprocal space. We start by setting up the
energy in real space. Realizing that the energy of a split
charge in an electrostatic field E�R� due to external charges
�not to be confused with external field� is −q��R�E��R�, we
can write

V = �
R

�

2
Q2�R� +

�s

2
q��R�q��R� − q��R�E��R�

+
1

8�	0
�

R,R�R�

Q�R�Q�R��
�R − R��

. �13�

The last summand is the Coulomb interaction energy, VC,
which can be represented with the help of the Ewald sum-
mation. For analytical calculations, it is most convenient to
express VC entirely in reciprocal space. With our convention
of the Fourier series and by reducing the k vectors to those
that lie in the first Brillouin zone �BZ� of the simple cubic
lattice, we obtain

1

N
VC =

1

4�	0a
�

k�1.BZ
�M�k� �14�

with

1

4�
�M�k� = lim

�E→

−

�E

�2�3
+ �

G

exp�− a2�k + G�2/2�E
2�

a2�k + G�2
,

�15�

where G are reciprocal lattice vectors.
Two important limiting cases for our wave-vector-

dependent Madelung constant �M�k� are as follows:

�̃M�k� = �4�/�ka�2 for k → 0

− �M
NaCl for k = �

a �1,1,1� 	 , �16�

where �M
NaCl=1.748 is the “regular” Madelung constant for

the rocksalt lattice. It is the minimum value of �M�k� for the
simple cubic structure, and hence when the stability condi-
tion in Eq. �5� is violated, the system exhibits an instability
into the rocksalt structure. More information on the wave
vector-dependent Madelung constant can be found in Sec.
III.
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Doing the Fourier transform on the remaining terms in the
SQE potential energy yields

1

N
V = �

k

1

2
�� +

��k�
4�	0a

�Q̃��k�Q̃�k�

+
1

2
�sq̃�

��k�q̃��k� − q̃�
��k�Ẽ��k� . �17�

Here, it is important to keep in mind that the Q̃�k� are related
to the Fourier coefficients of the split charges via Eqs. �10�
and �11�. Thus, energy is minimized if

Ẽ��k� = 
e���k� + �s����q̃��k� , �18�

where

e���k� = 4�� +
�M�k�
4�	0a

�sin� k�a

2
�sin� k�a

2
� �19a�

→�� +
1

	0a
�a2k�k� for k → 0. �19b�

Thus, one can calculate the response of the split-charge
model to a field produced by external charges. It is worth
pointing out that the solution is not unique unless �s�0 as
different split-charge distributions can yield the same charge
distributions when the bond hardness is zero. It is further-
more worth pointing out that it is instructive to reproduce the
stability criterion for the rocksalt lattice from the formalism
developed here. The difference in �Na and �Cl can be repre-
sented by an �added� electrostatic field of magnitude 
� /a at
the wave vector k= �� /a��1,1 ,1�. Using this wave vector
�Eqs. �19� and �18� with the appropriate value of ��k� stated
in Eq. �16�
, one can see that one will only get a �physically
meaningful� positive restoring force on the split charge when
Eq. �5� is satisfied.

D. Wavelength-dependent Madelung constant

In this section, we present and discuss the numerical work
on the estimation of �M�k�, which we needed to calculate the
discretization corrections. The bare data are shown in Fig. 1.
The comparison to the continuum limit and the Madelung
constant of the rocksalt lattice is successful. However, the
range in which the continuum solution is appropriate turns
out to be fairly small.

In Fig. 1 we also show the leading-order corrections to the
continuum solution. The first symmetry-allowed correction is
of order k2. Including that direction leads to a fair represen-
tation of ��k� throughout the first Brillouin zone, although
the instability associated with the rocksalt lattice is overesti-
mated slightly. Including the second symmetry-allowed cor-
rection leads to essentially quantitative agreement. These
terms are the k4 term, and a term, which is related to the
cubic anisotropy, i.e., is the fourth-order cumulant, K4,

K4 = − �ka�4 +
3

2 �
�=1

3

�k�a�4. �20�

To summarize, �̃M�k� can be described rather well through-
out the first Brillouin zone in simple cubic and rocksalt struc-
tures with the equation

1

4�
�̃�k� = 1 − ��ak�2 + �
�ak�4 + K4� , �21�

where �=0.2257�8� and �=0.003�7�.

E. Dielectric constant and penetration depth

In this section, we will consider a constant electrical field
parallel to the z axis and solve the split-charge equations in
the continuum limit. From the results, one can calculate the
dielectric constant and the penetration depth. To mimic the
condition of a periodically continued capacitance geometry,
which we use in the simulations �see Sec. III A�, we write the
electrostatic field on the domain −�1+	�zm�z� �1+	�zm
�with 	→0� as

E�R� = ez
E0 − E0zm��z � �1 + 	
zm�� �22�

and repeat this field along the z direction with period 2zz. The
presence of the � functions in Eq. �22� turns the external
electrostatic potential into a function that is periodic in space
and allows for a direct comparison with the numerical solu-
tions of the problem. The Fourier series coefficients of the z
component of the E field satisfy

Ẽ3�k� = �− 2E0, kx = ky = 0, kz = 2�n
�1+	�zm

, n � N

0, else.
	 .

�23�

Assuming the continuum limit allows one to rewrite Eq.
�18� as

Γ Σ Μ Ζ X S R Λ Γ ∆ X

-80

-60

-40

-20

0

(a
k)

2 α M
(k

)

4π

3π2αNaCl

numerical data
4π[1−0.22578 (ak)

2
]

4π[1-0.22578(ak)
2
+0.0037{(ak)

4
+K

4
}]

FIG. 1. Wavelength-dependent Madelung constant �M�k� times
the squared wave vector k �in units of the lattice constant a� along
selected paths in the first Brillouin zone of the simple cubic lattice.
The continuum limit of that expression is 4�, which is shown as the
upper dotted line. The value associated with the Madelung constant
�times ��1,1 ,1
 squared� is represented with the lower straight
dashed line. Estimates for the two first leading-order corrections are
included as well. K4 is the fourth-order cumulant defined in Eq.
�20�.
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Ẽ� = ���a2k2 +
1

	0a
� k�k�

k2 + �s���	q̃� �24�

for the given wave vector of interest. Assuming the capacitor
geometry described in the precedent paragraph, we can

choose Ẽ��k�=−2E0�k10�k20�3�, k�=k�3�, and q̃�= q̃s�3� and
one can invert this last �matrix� equation to yield

q̃s�k� =
− 2E0

�a2k2 +
1

	0a
+ �s

. �25�

Thus, for k→0, the term related to � disappears with k2,
which means that there is no restoring force to an external
electrostatic field and charge flows until the external electro-
static field is compensated by the polarization charge; i.e.,
the system behaves as metallic.

The macroscopic or long-wavelength response in the
presence of a finite bond hardness �dielectric� divided by that
of the metal ��s=0� is

q̃s,dielectric

q̃s,metallic

=
1/	0a

�s + 1/	0a
�26�

for small k. In the absence of periodic boundary conditions,
i.e., for real capacitor geometries, this ratio expresses the
percentage of the external field that is annihilated by the
polarization response of the system, which is complete anni-
hilation for �s=0, and thus

	r = 1 +
1

	0a�s
. �27�

When solving the response of the dielectric with given
E3�z�, solutions would be obtained by finding the roots in the
denominator of Eq. �25�. These roots are

ak1,2 = � i�1

�
��s +

1

	0a
� . �28�

The absolute values of these roots are an inverse lengthscale,
which can be associated with a correlation or penetration
depth, �, for which we thus find

� = a ·� 	0a�

1 + 	0a�s
. �29�

Equations �28� and �29� allow one to choose effective
values for the “free” parameters of the SQE model to best
reflect the dielectric properties of a given material. Since 	r is
“fixed” by the choice of �s, the � can be used to “fine-tune”
effective values for �. Embedding a more specific behavior
into the SQE model, such as different functional forms of the
dispersion, would require the introduction of split charges
beyond nearest-neighbor split charges.

F. Discretization corrections

As can be seen in Sec. II D, the range in which the con-
tinuum approximation describes the wave vector-dependent
Madelung constant �M�k� accurately is rather limited. When

the first correction is included, it is still relatively simple to
solve the continuum model, and at the same time, �M�k� is
obtained quite accurately in a fair fraction of the first Bril-
louin zone. To include the corrections, we use

�M�k� = 4��1 − ��ak�2
 , �30�

where ��0.225 78 for the simple cubic lattice.
One can proceed as in Sec. I, except that Eq. �24� is

replaced with

Ẽ� = ���a2k2 +
1 − ��ak�2

	0a
� k�k�

k2 + �s���	q̃�. �31�

The roots in the prefactor to q̃� in this equation from which
the penetration depths was calculated are now

� = a ·� 	0a� − �

1 + 	0a�s
, �32�

and thus discretization corrections reduce the penetration
depth, which will be particularly apparent when � is very
small.

When � is sufficiently small, the penetration depth be-
comes imaginary. For small �, the values for �s must be
sufficiently large to guarantee the stability of the dielectric.
In that case, the denominator on the r.h.s. of Eq. �25� does
not tend to have poles in the first Brillouin zone, which

means that the ratio of q̃s�k� and Ẽ�k� is essentially constant.
This in turn implies that for the capacitor geometry consid-
ered here, split charges are almost constant through the ma-
terial; that is, charge only builds up in the last layer on the
surface.

III. COMPARISON TO NUMERICAL SOLUTIONS
OF THE SQE MODEL

A. Model system and method

In our numerical calculations, we consider a simple cubic
lattice of SQE charges. The distance between nearest neigh-
bors, a, is used to define the unit of length; i.e., a=1. This
means that the atomic number density of the simple lattice
n=1 /a3 and consequently a number density of split charges
of ns=3n. The solids in our calculation are typically com-
posed of 10�10�100 atoms. While the numerical solu-
tions could have been simplified substantially, e.g., by mak-
ing use of the fact that the atomic charges in each layer are
identical, we felt it was sufficient to use our house-written,
“not-special-purpose” molecular-dynamics code.

Periodic boundary conditions are invoked in all three spa-
tial dimensions. The size of the simulation box is 10a
�10a� �100+	� a; that is, we investigate a sandwich struc-
ture with the sandwich normal parallel to the z direction. The
extramargin in the z direction breaks the bonds between dif-
ferent periodic images; thus, there are no split charges across
the boundary in the z direction. There are two reasons why
we chose the dimension parallel to z only marginally larger
than the actual crystal. It reduces the computational time, but
more importantly, it also appears to reduce finite-size effects.
In another set of simulation, i.e., whenever we want to as-
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certain the external field, the length of the vacuum slab was
increased to that of the dielectric.

As the potential V is bilinear in the split charges, we can
use molecular dynamics on them within an extended La-
grangian scheme to find their optimum values. For this pur-
pose, the split charges are assigned a mass mij =�ij +�i+� j,
which moves the characteristic frequency of an oscillation to
roughly unity. The equations of motion are damped with a
term −mij�q̇ij, where the damping constant is typically cho-
sen to be 1/2. This choice for � renders the motion to be very
slightly underdamped. The molecular-dynamics time step is
chosen to be 
t=2� /20 so that one typical oscillation is
decomposed into 20 time steps. �For large ratios of � /�s
smaller dampings are preferential to avoid overdamping of
long-wavelength modes.� For calculations, where � is similar
to or larger than �s, the system is essentially relaxed after 20
time steps; for smaller ratios, more time steps have to be
carried out.

B. Results

In this section, we will test the analytical predictions with
the numerical solutions of the model system that is described
in Sec. II. We start the test of our analytical results by com-
paring a measurement of the penetration depth from simula-
tions to those obtained in the regular continuum solution.
The equation for the penetration depth is given in Eq. �29�,
and from this equation, one can find the spatial or z depen-
dence to be

��z� � sinh�z/�� , �33�

where we could make use of the problem’s symmetry by
placing the center of mass of the simulation cell into the
origin of the coordinate system; i.e., the charges decay expo-
nentially into the system from both surfaces at a rate propor-
tional to 1 /�. In Fig. 2 we demonstrate that this prediction is
accurate within symbol size, at least for the investigated
value of �=10a. Three cases are shown explicitly: one metal
��s=0�, one dielectric with an extremely small polarizability
��s=200�, and one case in between. As the continuum solu-
tion becomes better with increasing � one can state that the
continuum solution is applicable for ��10a.

Next, we want to test the equation for the dielectric con-
stant, i.e., Eq. �27�. To do this, the electrostatic field is mea-
sured inside the solid at atomic sites �neglecting the on-site
charge� and at the vertex points of the elementary cells,
where the contribution of eight nearest identical charges
would cancel exactly. The atomic-site value and the average
of the eight vertex points are averaged, which gives a fair
estimate of the electrostatic field in one elementary cell. Un-
fortunately, we cannot simply associate the external field
with the externally applied electrostatic field. The reason is
that due to the periodic boundary conditions, it is not defined
if the vacuum slab or the dielectric slab is within the capaci-
tance. In other words, surface effects prevail in an infinitely
repeated array of capacitances. In order to yet determine the
external field we increased the vacuum slab and calculated
the electrostatic field with the same �Ewald summation� sub-
routines as those that were used to produce the charges.

Changing the cutoffs in real and reciprocal states did not
alter the results. Some data of the z dependence on E are
shown exemplarily in Fig. 3. It can be shown that the elec-
trostatic field remains constant outside the material and de-
cays to another constant value within, which is greater than
zero for positive values of �s. For �s=0, the total field inside
the material decays exponentially, mimicking the response of
an ideal conductor.

In order to measure 	r, the dielectric constant, we use the
equation
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FIG. 2. �Color online� Comparison of numerical data and theory
on the z dependence of the charge density. In the calculations, the
number of layers was 100, and thus zM =50a. � was chosen such
that the penetration depth �=10a remained constant, which makes
the normalized charge density ��z� /��zM� collapse onto a single
curve. The shaded area reflects the �normalized� surface charge
from the continuum limit treatment. There is no adjustable coeffi-
cient in the theory.
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FIG. 3. �Color online� Normalized z component of the electro-
static field in the capacitor geometry as a function of z �normalized
on half the thickness, zM, of the dielectric� for different values of �s.
Here, the bulk capacitor material is Nz=60 layers thick and placed
in a simulation box 2Nza units long. The system is subjected to a
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nitude Eapp. The atomic hardness of the material is fixed at 	0a�
=4.
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	rEint = Eout. �34�

The ratio Eint /Eout is determined from data that are shown in
Fig. 3 and from related data. Results for 	r are shown in Fig.
4. The error between simulation and prediction was less than
0.1% in all cases investigated, where �s�0. It could always
be reduced by reducing the controllable errors in the numeri-
cal calculations, such as by increasing the system size, im-
proving the cutoffs in the Ewald summation, or relaxing the
system for a longer time, providing evidence that Eq. �27� is
exact.

Lastly, we wish to demonstrate that the dispersion or finite
discretization correction to the Madelung constant can be
used to improve the spatial variation of the electrostatic field.
This is done in Fig. 5, where the charge density of a conduc-
tor with small penetration depth � is shown. For the selected
parameters, the regular continuum treatment overestimates �
by almost 50% while, including the corrections to ��k� up to
second order, reduces the error to less than 1 % for the cho-
sen parameters. Numerical errors, in particular due to the
Ewald summation, become relevant when the induced
charges are very small, which is apparent in the linear-
logarithmic representation. However, as before, errors are
controllable by increasing the cutoffs, relaxation times, etc.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we used continuum theory and numerical
methods to investigate the dielectric properties of the split-
charge formalism, which contains the regular charge equili-
bration method as a limiting case when the bond hardness is
set to zero. In the other limit, i.e., when the atomic hardness
is set to zero, SQE corresponds to pure bond-type charge
equilibration approaches. For systems that can be described
as simple cubic or rocksalt structures we find that the dielec-
tric constant follows the equation

	r = 1 +
ns

9	0�s
, �35�

where we have rewritten Eq. �27� by introducing the term
�s=�sa

2, which is the �dipole� polarizability associated with

a split charge and where we expressed the split-charge den-
sity ns as 3 /a3. Equation �35� has the same structure as a
truncated density expansion of the Clausius Mossotti rela-
tion; see Ref. 17 for a pedagogical derivation of that relation.
However, for the split-charge model, the expansion truncates
after the first-order term in density. An interesting conse-
quence of Eq. �35� is that the dielectric constant diverges in
the limit of zero bond stiffness, which implies that regular
charge equilibration methods produce the same electrostatic
fields as metals.

Besides predicting correctly the dielectric constant as a
function of the microscopic parameters of the SQE model,
we also find that the penetration depth is predicted correctly
by the continuum approach, although discretization correc-
tions are required when the characteristic length scales ap-
proach values in the vicinity of the lattice constant. Another
feature that corrections to the continuum solutions capture
correctly, at least for simple cubic systems, is the point in the
Brillouin zone where the dielectric response first shows in-
stability upon a decrease in lattice constant; i.e., the system
becomes unstable at the largest reciprocal lattice vector con-
tained in the first Brillouin zone. Such instabilities are often
deemed as unphysical, but solid H2, for example, becomes
infrared active under high pressure.18 That situation, if ratio-
nalized within an SQE model, would require restoring terms
that couple to the fourth moments of split or net charges, and
it might be worth pursuing these higher-order terms for sys-
tems under large pressure.

An appealing property of the split-charge method is that
the “adjustable” parameters can be parametrized directly
from experiments. The dielectric constant �at least its high-
frequency/electronic part� translates directly into a value for
�s, and the atomic hardnesses follow from atomic data for
electronegativity and ionization energy. Alternatively, one
may want to use a value for � that best reflects the penetra-
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tion depth on which the external electrostatic field decays to
the value inside the solid.

It is difficult to speculate how much the SQE model can
improve existing force fields, in particular, how much better
electrostatic interactions will be modeled near surfaces as
compared to, for example, current implementation of the
regular QE approach in CHARMM �Ref. 19� or REAX force
field.20 However, given the results in the original SQE
work,15 it seems as though its advantages are particularly
strong when two chemical moieties are in close vicinity, e.g.,
the electrostatic potential �ESP� surface of a water methane
dimer was found to have an error of 59% with regular QE,
which was reduced to 29% with SQE. Of course, when elec-
trostatic field lines are parallel to a dielectric surface, much
further improvement is to be expected because the regular
QE model behaves like a metal and thus excludes these
transverse components, while SQE has the ability to mimic
dielectrics.

One challenge that the SQE model will certainly face in
molecular-dynamics simulations is that extended Lagrangian
schemes are not straightforwardly applicable when �s di-
verges during bond breaking. A large �s will induce high-
frequency oscillations unless the “split-charge mass” was
made time dependent and adjusted according to changes in
�s. Thus, we expect future implementations of the SQE
method into simulation software to be based on regular mini-
mization techniques.

We would like to summarize our discussion by formulat-
ing a list of requirements for charge-transfer potentials. They
should have the following features: �i� adjustable dielectric
constant, �ii� adjustable penetration depth of the electrostatic
field, �iii� retain, at least in principle, the parametrization of �
and � from atomic principles, �iv� produce the correct disso-
ciation limit for broken chemical bonds without invoking
externally imposed charge neutrality constraints, and show
the correct scaling of the polarizability with the degree of
polymerization for polymer chains in the limit of �v� long
chains and �vi� short chains. Pure atom-based charge equili-
bration approaches violate �i�, �iv�, and �v�, while pure bond-
based charge equilibration approaches �in which the bond
hardness diverges when the bond breaks� violate �ii�, �iii�,
and �vi�. The split-charge method does not violate any of the
criteria, which is why we would argue that it bears great
potential for the use in classical force fields. Of course, as
argued in, for instance, Ref. 14, it will be necessary to in-
clude on-site atomic polarization to also reflect polarization
normal to the bonds. Corrections of this type can be added to
the split-charge model in the same way as they can be added
to regular charge fluctuation models.
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